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Methods , systems , and apparatus , including computer pro 
grams encoded on computer storage media , for detecting 
regions of an environment . One of the methods includes 
receiving a representation of a scene in an environment ; 
processing the representation using a center prediction neu 
ral network to generate : ( i ) features of the scene in the 
environment , and ( ii ) a respective center score correspond 
ing to each of a plurality of locations in the environment ; 
selecting , based on the respective center scores , one or more 
of the plurality of locations ; and for each selected location : 
processing an input comprising the features of the scene in 
the environment and data specifying the selected location 
using a geometry prediction neural network to generate a 
geometry prediction that represents a geometry of the region 
that is centered at the selected location . 
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REGION DETECTION AND GEOMETRY 
PREDICTION 

CROSS - REFERENCE TO RELATED 
APPLICATION 

[ 0001 ] This application claims the benefit of U.S. Provi 
sional Application No. 63 / 158,835 , filed on Mar. 9 , 2021 . 
The disclosure of the prior application is considered part of 
and is incorporated by reference in the disclosure of this 
application . 

BACKGROUND 

a [ 0002 ] This specification relates to detecting regions in a 
scene of an environment . For example , the region detection 
may be performed by an autonomous vehicle navigating 
through the environment . Autonomous vehicles include self 
driving cars , boats , and aircraft . Autonomous vehicles use a 
variety of on - board sensors and computer systems to mea 
sure nearby objects and use these measurements to make 
control and navigation decisions . 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0003 ] FIG . 1A is a diagram of an example system . 
[ 0004 ] FIG . 1B shows an example polygonal representa 
tion generated from a region detection output generated by 
the region detection system . 
[ 0005 ] FIG . 2 shows the operation of the region detection 
system 
[ 0006 ] FIG . 3 shows the operation of the training system . 
[ 0007 ] FIG . 4 is a flow diagram of an example process for 
generating a region detection output . 
[ 0008 ] Like reference numbers and designations in the 
various drawings indicate like elements . 

a 

[ 0011 ] Some existing techniques attempt to predict the 
geometry of regions in a scene using bounding boxes . 
However , bounding boxes impose constraints on the geom 
etry of regions that may not be accurate for many types of 
regions , i.e. , because bounding boxes only represent the 
geometry as an approximately rectangular box even though 
many different regions can have geometries that are much 
more complex . 
[ 0012 ] Other existing techniques attempt to predict the 
geometry of regions using per - pixel or per - point estimates . 
These techniques attempt to assign to each point or pixel in 
a sensor measurement a label that indicates whether the 
point or pixel is part of a particular type of region in the 
environment . However , while this allows for a much wider 
array of possible geometries to be represented , because such 
fine - grained labeling is very difficult and can be inherently 
ambiguous , these techniques can generate inaccurate labels 
for significant portions of the scene , resulting in inaccurate 
geometries for many of the regions in the scene . Moreover , 
performing this per - pixel or per - point labeling can require 
relying on heuristics that may not be valid across all scenes 
that can be encountered by a vehicle or agent . 
[ 0013 ] This specification describes techniques for both 
detecting regions in an environment and predicting the 
geometry of these predicted regions . More specifically , as 
will be described in more detail below , the techniques 
described in this specification result in geometry predictions 
that represent the geometry of a corresponding region in the 
environment as a collection of one or more convexes , i.e. , 
convex polytopes , that are each defined by a set of hyper 
planes . By generating predictions as a collection of con 
vexes , the described techniques can effectively represent 
more complex geometries than techniques that require 
geometries to be represented as bounding boxes . Moreover , 
by first detecting regions and then only generating geometry 
predictions for detected regions , i.e. , rather than for the 
entire scene , the described techniques consume fewer com 
putational resources , e.g. , memory and processor cycles , 
than techniques that require per - pixel or per - point labeling . 
Additionally , the described techniques use a neural network 
that has been trained end - to - end and do not rely on any 
heuristics , allowing the described techniques to generalize to 
different navigation scenarios effectively . Thus , the 
described techniques generate accurate geometry predic 
tions that effectively represent complex region geometries 
while remaining computationally efficient . Accordingly , the 
described techniques are particularly adapted for being 
deployed on - board an autonomous vehicle or other agent in 
order to improve the operation of the autonomous vehicle or 
other agent . 
[ 0014 ] FIG . 1A is a diagram of an example system 100 . 
The system 100 includes an on - board system 110 and a 
training system 120 . 
[ 0015 ] The on - board system 110 is located on - board a 
vehicle 102. The vehicle 102 in FIG . 1A is illustrated as an 
automobile , but the on - board system 102 can be located 
on - board any appropriate vehicle type . In some cases , the 
vehicle 102 is an autonomous vehicle . An autonomous 
vehicle can be a fully autonomous vehicle that determines 
and executes fully - autonomous driving decisions in order to 
navigate through an environment . An autonomous vehicle 
can also be a semi - autonomous vehicle that uses predictions 
to aid a human driver . For example , the vehicle 102 can 
autonomously apply the brakes if a prediction indicates that 

DETAILED DESCRIPTION 

[ 0009 ] This specification describes a system implemented 
as computer programs on one or more computers in one or 
more locations that detects and predicts the geometry of 
regions in an environment . That is , given a representation of 
an environment , the system detects where regions of a 
particular type are located in the environment and predicts 
the geometry of each detected region . For example , the 
particular type of region can be one or more types of road 
feature , e.g. , a crosswalk , a driveway , a speed bump , and so 
on . As another example , the particular type of region can be 
one or more types of dynamic objects , e.g. , a vehicle , a 
cyclist , a pedestrian , and so on . 
[ 0010 ] Accurately detecting and predicting the geometry 
of regions can provide an important and useful signal to an 
autonomous vehicle or another agent , e.g. , a robot , navigat 
ing through an environment . For example , accurately pre 
dicting the geometry of moving objects can assist the 
autonomous vehicle or other agent in navigating through the 
environment without colliding with the moving objects . As 
another example , many machine learning models that are 
used in planning the trajectory of the vehicle or agent require 
inputs that accurately represent the geometry of road fea 
tures . For example , many machine learning models that are 
used to predict the behavior of other agents in the environ 
ment receive an input that represents the road graph , i.e. , the 
set of road features that are located in the vicinity of the 
autonomous vehicle or other agent , using polygon geom 
etries . 
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a human driver is about to collide with another vehicle . As 
another example , the vehicle 102 can have an advanced 
driver assistance system ( ADAS ) that assists a human driver 
of the vehicle 102 in driving the vehicle 102 by detecting 
potentially unsafe situations and alerting the human driver or 
otherwise responding to the unsafe situation . As a particular 
example , the vehicle 120 can alert the driver of the vehicle 
102 or take an autonomous driving action when an obstacle 
is detected , when the vehicle departs from a driving lane , or 
when an object is detected in a blind spot of the human 
driver . 
[ 0016 ] The on - board system 110 includes one or more 
sensor subsystems 130. The sensor subsystems 130 can 
include one or more laser sensors , e.g. , lidar sensors , that 
generate scene representation 132 by detecting reflections of 
laser light , and optionally one or more other sensors , e.g. , 
radar sensors that detect reflections of radio waves , camera 
sensors that detect reflection of visible light , and so on . 
[ 0017 ] A point cloud generally includes multiple points 
that represent a sensor measurement of a scene in an 
environment captured by one or more sensors . Each point 
has a location in a specified coordinate system , e.g. , a 
three - dimensional coordinate system centered at the sensor , 
and can optionally be associated with additional features , 
e.g. , intensity , second return , and so on . 
[ 0018 ] As the vehicle 102 navigates through the environ 
ment , various sensors capture measurements of the environ 
ment . For example , a laser sensor can repeatedly capture 
point clouds during the navigation . 
[ 0019 ] Once the sensor subsystems 130 generate the mea 
surements at any given time point , the sensor subsystems 
130 can generate a scene representation 132 of a scene of the 
environment from raw sensor data , i.e. , from the measure 
ments captured by one more of the sensors . 
[ 0020 ] The sensor subsystems 130 then provides the scene 
representation 132 to a region detection system 150 , also 
on - board the vehicle 102. For example , the scene represen 
tation 132 can be a top - down representation that represents 
the scene , i.e. , the region of the environment that is within 
the range of one or more sensors of the vehicle 102 , in a 
top - down coordinate system , e.g. , one that is centered at the 
location of the vehicle 102. The top - down representation can 
be generated from , e.g. , a point cloud or other data captured 
by a laser sensor 
[ 0021 ] The region detection system 150 processes the 
scene representation 132 to generate a region detection 
output 152 . 
[ 0022 ] The region detection output 152 identifies one or 
more regions in the scene , e.g. , in the top - down coordinate 
system , and predicts the geometry of each identified region . 
That is , the region detection output 152 includes a respective 
geometry prediction for each region that the system 150 has 
detected in the environment using the scene representation 
132 . 
[ 0023 ] In some cases , the system 150 can be configured to 
detect ( and predict the geometry of ) a single type of envi 
ronment region . As a particular example , the system 150 can 
be configured to detect different instances of a particular 
type of road feature in an environment , e.g. , a crosswalk , 
speed bump , a driveway , and so on . As another particular 
example , the system 150 can be configured to detect regions 
that are occupied by objects , e.g. , dynamic objects like 
vehicles , cyclists , pedestrians , and so on , or static objects 
like road signs , stoplights , and so on . 

[ 0024 ] In other cases , the system 150 can be configured to 
detect ( and predict the geometry of ) multiple different types 
of environment regions , e.g. , multiple different types of road 
features or both road features and regions that are occupied 
by objects . 
[ 0025 ] A given geometry prediction represents the geom 
etry of a corresponding region in the environment as a 
collection of one or more convexes , i.e. , convex polytopes . 
A polytope is a geometric object with flat sides . A convex 
polytope is a polytope that is convex , i.e. , that encloses a 
convex set of points . 
[ 0026 ] Each convex within the collection is represented by 
a set of hyperplanes . Thus , the geometry prediction speci 
fies , for each of the one or more convexes that make up the 
corresponding region , the respective set of hyperplanes that 
define the convex . 
[ 0027 ] Thus , rather than representing geometries using 
bounding boxes or attempting to segment each point in the 
scene representation 132 , the system 150 instead represents 
the predicted geometries using convexes . 
[ 0028 ] More specifically , the region detection system 150 
processes the scene representation 132 using a set of neural 
networks and in accordance with trained parameter values 
195 of the set of neural networks to generate the region 
detection output 152. Generating the region detection output 
152 will be described in more detail below with reference to 
FIGS . 2 and 4 . 
[ 0029 ] The on - board system 110 also includes a planning 
system 160. The planning system 160 can make autonomous 
or semi - autonomous driving decisions for the vehicle 102 , 
e.g. , by generating a planned vehicle path that characterizes 
a path that the vehicle 102 will take in the future . 
[ 0030 ] The on - board system 100 can provide the region 
detection outputs 152 generated by the region detection 
system 150 to one or more other on - board systems of the 
vehicle 102 , e.g. , the planning system 160 and / or a user 
interface system 165 . 
[ 0031 ] When the planning system 160 receives the region 
detection outputs 152 , the planning system 160 can use the 
region detection outputs 152 to generate planning decisions 
that plan a future trajectory of the vehicle , i.e. , to generate 
a new planned vehicle path . 
[ 0032 ] Generally , the planning system 160 can use the 
region detection outputs 152 as part of planning a future 
trajectory in any of a variety of ways . 
[ 0033 ] For example , the planning system 160 can use the 
region detection outputs 152 to identify the positions of 
moving objects in the scene and generate a new planned 
vehicle path that avoids a potential collision with any of the 
moving objects and cause the vehicle 102 to follow the new 
planned path , e.g. , by autonomously controlling the steering 
of the vehicle . 
[ 0034 ] As another example , the planning system 160 can 
use the region detection outputs 152 to generate an input for 
a downstream task . For example , the planning system 160 
can use the region detection outputs 152 to generate a 
polygonal representation of one or more regions in the 
environment and provide the polygonal representations as 
input to a neural network that is configured to perform a 
downstream task , e.g. , object tracking or behavior predic 
tion . The planning system 160 can then use output of this 
downstream task to generate a new planned path for the 
vehicle 102. For example , the planning system 160 can 
represent a region that corresponds to a road feature as a 

9 
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polygon using the geometry prediction for the region in an 
input to a behavior prediction neural network that predicts 
the future behavior of agents in the vicinity of the vehicle 
102 . 
[ 0035 ] When the user interface system 165 receives the 
region detection outputs 152 , the user interface system 165 
can use the region detection outputs 152 to present infor 
mation to the driver of the vehicle 102 to assist the driver in 
operating the vehicle 102 safely . The user interface system 
165 can present information to the driver of the agent 102 by 
any appropriate means , for example , by an audio message 
transmitted through a speaker system of the vehicle 102 or 
by alerts displayed on a visual display system in the agent 
( e.g. , an LCD display on the dashboard of the vehicle 102 ) . 
In a particular example , the region detection outputs 152 
may contain a geometry prediction for a speed bump , 
crosswalk , driveway , or other road feature around which the 
vehicle 102 should slow down to ensure safe operation . In 
this example , the user interface system 165 can present an 
alert message to the driver of the vehicle 102 with instruc 
tions to adjust the trajectory of the vehicle 102 to slow down 
in the vicinity of the road feature or render the road feature 
as a polygon on a display of the area surrounding the vehicle 
that is shown in the visual display system . 
[ 0036 ] The region detection system 150 can obtain the 
trained parameter values 195 , i.e. , the trained parameter 
values of the neural networks used by the region detection 
system 150 , from a model parameters store 190 in the 
training system 120 . 
[ 0037 ] The training system 120 is typically hosted within 
a data center 124 , which can be a distributed computing 
system having hundreds or thousands of computers in one or 
more locations . 
[ 0038 ] The training system 120 receives raw training 
examples from vehicles operating in the real world and / or 
from other sources , e.g. , synthetic training examples gener 
ated in simulation or training examples generated by sensors 
on other agents , e.g. , robots or other moving agents . For 
example , the training system 120 can receive raw training 
examples 155 from the vehicle 102 and one or more other 
agents that are in communication with the training system 
120 . 
[ 0039 ] Each raw training example 155 can be processed 
by the training system 120 to generate a new training 
example 175. In particular , each raw training example 155 
includes a scene representation of a scene in the environ 
ment . 

[ 0040 ] The new training example 175 includes ( i ) the 
scene representation and ( ii ) a ground truth region detection 
output that includes a respective ground truth geometry 
prediction for each of one or more regions in the scene 
representation . The training system 120 can generate the 
ground truth detection outputs , e.g. , by providing the scene 
representations for presentation to users and receiving inputs 
from the users specifying the actual geometries of each 
region of the type or types that the system 150 is configured 
to detect that is present in the scene representation . 
[ 0041 ] The training data store 170 provides training 
examples 175 to a training engine 180 , also hosted in the 
training system 120. The training engine 180 uses the 
training examples 175 to update the parameters of the neural 
networks , and provides the updated model parameters 185 to 
the model parameters store 190. That is , the training engine 
180 trains the neural networks on the training examples 175 

to minimize a loss function using gradient - based machine 
learning techniques . Training the neural networks and the 
loss function used for the training are described in more 
detail below with reference to FIG . 3 . 
[ 0042 ] Once the parameter values of the neural network 
have been fully trained , the training system 120 can send the 
trained parameter values 195 to the region detection system 
150 , e.g. , through a wired or wireless connection . 
[ 0043 ] While this specification describes that region 
detection outputs are generated on - board an autonomous 
vehicle , more generally , the described techniques can be 
implemented on any system of one or more computers that 
receives point clouds of scenes in an environment . 
[ 0044 ] As one example , the region detections can be made 
on - board a different type of agent that has a laser sensor and 
that interacts with objects as it navigates through an envi 
ronment . For example , the region detections can be made by 
one or more computers embedded within a robot or other 
agent . 
[ 0045 ] As another example , the region detections can be 
made by one or more computers that are remote from the 
agent and that receive scene representations generated from 
data captured by the sensors of the agent . In some of these 
examples , the one or more computers can use the location 
predictions to generate control decisions for controlling the 
agent and then provide the control decisions to the agent for 
execution by the agent . 
[ 0046 ] As another example , the region detections may be 
made in a computer simulation of a real - world environment 
being navigated through by a simulated autonomous vehicle 
and the target agents . Generating these predictions in simu 
lation may assist in controlling the simulated vehicle and in 
testing the realism of certain situations encountered in the 
simulation . More generally , generating these predictions in 
simulation can be part of testing the control software of a 
real - world autonomous vehicle before the software is 
deployed on - board the autonomous vehicle , of training one 
or more machine learning models that will later be deployed 
on - board the autonomous vehicle , or both . 
[ 0047 ] FIG . 1B shows an example polygonal representa 
tion 192 generated by the region detection system 150 from 
a scene representation 132 . 
[ 0048 ] In the example of FIG . 1B , the scene representation 
132 is a top - down representation that represents the scene , 
i.e. , the region of the environment that is within the range of 
one or more sensors of the vehicle , in a top - down coordinate 
system , that is centered at the location of the vehicle and is 
generated from data captured by a laser sensor . 
[ 0049 ] The polygonal representation 192 shows road fea 
tures that have been detected in the scene representation 132 , 
with each road feature being represented by a respective 
polygon , line , or curve . For example , the scene representa 
tion 192 includes a respective polygon 194 for each of a set 
of crosswalks across an intersection . 
[ 0050 ] As will be described in more detail below with 
reference to FIG . 2 , the system 150 ( or another system 
on - board the vehicle 102 ) can generate the polygonal rep 
resentation 192 from respective geometry predictions for 
each detected road feature . For example , the system 150 can 
detect each crosswalk in the scene representation 192 , and 
then generate a respective geometry prediction for each of 
the detected crosswalks . The geometry prediction for a given 
region specifies , for each of one or more convexes in the 
geometry of the given region , a respective plurality of 
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configured to generate a respective pixel prediction score for 
each of a plurality of pixels in the representation . The pixel 
prediction score for a given pixel represents the likelihood 
that a region instance is depicted at the pixel . That is , unlike 
the center scores 214 , which represent the likelihood that a 
region is centered at a corresponding location , the pixel 
prediction scores represent the likelihood that any portion of 
a region is depicted at the pixel . 
[ 0060 ] In these cases , the features 212 can be the pixel 
prediction scores or can be the outputs of a hidden layer in 
the neural network head that generates the pixel prediction 
scores . 

hyperplanes that define the convex . A hyperplane is a 
subspace whose dimension is one less than that of its 
ambient space . Thus , each hyperplane is a subspace whose 
dimension is one less than that of the scene representation 
132. In the example of FIG . 2 , the representation 132 is 
two - dimensional and each hyperplane is therefore a 1 - di 
mensional line . The system 150 can generate the polygonal 
representation of a given region from the data specifying the 
hyperplanes by identifying , as the polygon , the area that is 
enclosed by the hyperplanes . Thus , the system 150 can 
represent the geometry more accurately than other systems 
that can only represent geometries as bounding boxes , i.e. , 
because a polygon can represent a more complex geometry 
than a rectangular box , and more accurately than other 
systems that attempt to label each pixel in the representation 
132 , i.e. , because generating polylines is much less error 
prone than labeling individual pixels . 
[ 0051 ] FIG . 2 is a diagram of the operations performed by 
the region detection system 150 to generate a geometry 
prediction for a given detected region . 
[ 0052 ] As shown in FIG . 2 , the region detection system 
150 receives as input a representation 202 of a scene in an 
environment . As described above , the representation 202 can 
be a top - down representation of the scene in the environ 
ment generated from measurements captured by one or more 
laser sensors . For example , the vehicle 102 can generate the 
representation 202 by projecting each three - dimensional 
point in a point cloud into a top - down , two - dimensional 
coordinate system that is centered at the location of the 
vehicle 102 . 
[ 0053 ] The region detection system 150 then processes the 
representation 202 using a center prediction neural network 
210 to generate features 212 of the scene in the environment 
and center scores 214 . 
[ 0054 ] The center scores 214 include a respective center 
score corresponding to each of a plurality of locations in the 
environment . The respective center score corresponding to 
any given location represents the predicted likelihood , i.e. , 
as determined by the center prediction neural network 210 , 
that the center of a region is located at the given location . 
[ 0055 ] Generally , each of the plurality of locations corre 
sponds to a different portion of the top - down representation 
of the environment . For example , each location can corre 
spond to a respective pixel in the top - down representation . 
In this example , the center score prediction neural network 
210 generates a respective center score for each pixel in the 
representation 202 that represents the likelihood that a 
region is centered at the environment location corresponding 
to the pixel . 
[ 0056 ] The features 212 of the scene in the environment 
include a respective feature scalar or vector for each of the 
plurality of locations in the environment . 
[ 0057 ] The center score prediction neural network 210 can 
generate the features 212 in any of a variety of ways . 
[ 0058 ] As one example , the features 212 can be the 
outputs of one of the hidden layers of neural network 210 . 
[ 0059 ] As another example , the center score prediction 
neural network 210 can have two neural network heads that 
each include a respective set of neural network layers . For 
example , the neural network 210 can include a shared 
backbone that processes the representation 202 to generate 
a shared feature representation , one neural network head that 
is configured to generate the center scores 214 by processing 
the shared feature , and another neural network head that is 

[ 0061 ] The center prediction neural network 210 can have 
any appropriate architecture that allows the neural network 
to map the representation 202 to the center scores 214 and 
the features 212. For example , the neural network 210 can 
be a convolutional neural network that includes a convolu 
tional backbone and two convolutional neural network 
heads . One example of such an architecture is the U - Net 
architecture . 
[ 0062 ] The region detection system 150 then selects , 
based on the center scores 214 , one or more of the locations 
in the environment . For example , the system 150 can select 
the one or more locations by selecting each location that has 
a score that exceeds a threshold score , by selecting a 
threshold number of highest - scoring locations , or by select 
ing at most the threshold number of locations that have the 
highest center scores and that have center scores that exceed 
the threshold score . If no locations have center scores that 
satisfy the requirements for selection , the system 150 can 
determine that no regions have been detected in the repre 
sentation 202 . 
[ 0063 ] In some implementations , the system 150 can 
apply one or more filtering techniques to the center scores 
214 prior to selecting the locations . In particular , the system 
150 can apply one or more filtering techniques that remove 
center scores 214 that are likely portions of the same region 
as another , higher scoring region . For example , the system 
150 can apply non - maximum suppression or another filter 
ing technique . 
[ 0064 ] For each selected location , the region detection 
system 150 then processes an input that includes the features 
212 of the scene and center data 216 specifying the selected 
location using a geometry prediction neural network 220 to 
generate a geometry prediction 222 for the selected location . 
For example , the center data 216 can be a feature map that 
has the same spatial dimensionality as the features , i.e. , that 
includes a respective value for each of the locations , and that 
identifies the selected location . For example , the feature map 
can be a one - hot feature map that has a 1 for the selected 
location and a 0 for all other locations . In these examples , 
the input can be a concatenation of the features 212 and the 
center data 216 along the depth dimension . 
[ 0065 ] The geometry prediction 222 represents the geom 
etry of the region that is centered at the selected location as 
a collection of one or more convexes . In particular , the 
geometry prediction 222 specifies , for each of the one or 
more convexes , a respective plurality of hyperplanes that 
define the convex . 
[ 0066 ] More specifically , the geometry prediction 222 
includes , for each hyperplane of each convex , parameters of 
a signed distance function that measures a signed distance of 
any given point in the environment from the hyperplane . 
That is , for each hyperplane , the output of the system 150 
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specifies the signed distance function that measures the 
signed distance of any given point in the environment from 
the hyperplane . 
[ 0067 ] The parameters of the signed distance function 
include a normal , e.g. , a unit normal corresponding to the 
hyperplane and , optionally , an offset of the hyperplane from 
the origin of the coordinate system of the representation 202 . 
Thus , in these cases , the geometry prediction 222 can 
include , for each hyperplane , the endpoint x , y coordinates 
of the unit normal , the offset in the x dimension of the 
hyperplane , and the offset in they direction of the hyper 
plane . 
[ 0068 ] The geometry prediction neural network 220 can 
have any appropriate architecture that maps the input that 
includes the selected center data 214 and the features 212 to 
an output that includes a respective set of parameters for 
each hyperplane of each convex . 
[ 0069 ] As a particular example , the neural network 220 
can include an encoder neural network configured to process 
the input to generate a set of hyperplane parameters and a 
decoder neural network configured to process the set of 
hyperplane parameters to generate the geometry prediction . 
An example of such an architecture is the CvxNet architec 
ture . CvxNets are described in more detail in Deng , et al , 
CvxNet : Learnable Convex Decomposition , arXiv : 1909 . 
05736 , available at https://arvix.org/abs/190905736 . 
[ 0070 ] The number of convexes for which the neural 
network 220 generates outputs is generally fixed prior to 
training the neural network 220. If a region has a simpler 
geometry that can be represented with fewer convexes than 
the fixed number , the neural network is trained to generate 
outputs defining redundant hyperplanes , i.e. , so that the 
region enclosed within the hyperplanes defined by the output 
of the neural network 220 does not change if the redundant 
hyperplanes are removed . 
[ 0071 ] In some implementations , the system 150 performs 
the processing of the geometry prediction neural network 
220 in parallel for each selected location , allowing the 
geometry predictions 222 for the selected locations to be 
generated with minimal latency . 
[ 0072 ] Once the geometry predictions 222 are generated , 
in some implementations , the system 150 can generate 
polygonal representations of the detected regions in the 
scene using the geometry prediction 222 , e.g. , as shown 
above with reference to FIG . 1B . 
[ 0073 ] FIG . 3 is a diagram of the operations performed by 
the training system 120 to train the center prediction neural 
network 210 and the geometry prediction neural network 
220 . 

[ 0074 ] At a given iteration of the training process , the 
training system 120 can perform these operations on each 
training example in a batch of training examples to update 
the parameters of the neural networks 210 and 220. As 
described above , each training example includes a scene 
representation 302 and a ground truth output 304 for the 
scene representation . 
[ 0075 ] Each ground truth output 304 generally includes a 
respective ground truth geometry prediction for each of one 
or more regions represented in the scene representation 302 . 
In the example of FIG . 3 , the ground truth output 304 also 
includes ( i ) a ground truth pixel score for each pixel in the 
scene representation 302 that represents whether the pixel is 

part of any region instance in the scene representation 302 
and ( ii ) a respective ground truth center location for each of 
the one or more regions . 
[ 0076 ] To train the neural networks , the training system 
120 processes the representation 302 using the center pre 
diction neural network 210 to generate features 312 of the 
scene in the environment and center scores 314 , i.e. , as 
described above with reference to FIG . 2 . 
[ 0077 ] During training , rather than select locations using 
the center scores 314 , for each of the one or more regions 
specified in the ground truth output 304 , the system 120 
provides an input to the geometry prediction neural network 
220 that includes ground truth center data 316 that identifies 
the ground truth location of the center of the region and 
either the features 312 or , when the features that are pro 
vided to the geometry prediction neural network 220 after 
training are the per pixel prediction scores , the ground truth 
per pixel prediction scores . Providing ground truth scores 
and ground truth center data as input to the neural network 
220 can prevent errors in predictions made by the neural 
network 210 from adversely impacting the training of the 
neural network 220 . 
[ 0078 ] The system 120 processes the input using the 
geometry prediction neural network 220 to generate a 
respective geometry prediction 322 for the corresponding 
region . 
[ 0079 ] The system 120 trains the neural network to mini 
mize an overall loss that is a combination , e.g. , a sum or a 
weighted sum , of multiple losses : a center prediction loss 
350 , a reconstruction loss 370 and , optionally , a per pixel 
prediction loss 360 . 
[ 0080 ] The center prediction loss 350 measures errors in 
center predictions generated by the center prediction neural 
network 110 relative to region centers specified by the 
ground truth outputs . For example , the loss 350 can be a 
focal loss . Thus , this loss 350 encourages the center predic 
tion neural network 110 to generate center scores that 
accurately reflect the positions of regions of the particular 
type ( s ) in input scene representations . 
[ 0081 ] When used , the per pixel prediction loss 360 mea 
sures errors in the per pixel predictions relative to region 
locations specified by the ground truth region geometries . 
For example , the loss 360 can be a cross - entropy loss . Thus , 
this loss 350 encourages the center prediction neural net 
work 110 to generate per - pixel predictions that accurately 
reflect where regions of the particular type ( s ) are located in 
input scene representations . 
[ 0082 ] The reconstruction loss 370 measures , for each 
region in the ground truth output 304 , the error between the 
geometry prediction 322 for the region and the ground truth 
geometry prediction for the region . For example , the recon 
struction loss 370 can be an L2 error or other distance - based 
error . 

[ 0083 ] As a particular example , the system 120 can 
sample points both inside and outside of the ground truth 
region , e.g. , according to any appropriate sampling scheme 
that ensures points both inside and outside the region are 
sampled . For each sampled point , the system can determine 
whether the sampled point is inside or outside the region 
defined by the geometry prediction for the region . The 
system can then determine the reconstruction loss 370 as a 
function of the sampled points . That is , the system can 
determine the loss 370 as a sum or average of the L2 norms 
( or other distance measures ) for each point , where the L2 
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norm is the L2 norm of the difference between ( i ) a first 
value or vector that indicates whether the point is predicted 
to be inside or outside the region and ( ii ) a second value or 
vector that indicates whether the point is actually inside or 
outside the ground truth region . 
[ 0084 ] Optionally , the loss function can also include other 
terms that are not shown in FIG . 3. For example , the loss 
function can also include localization loss that encourages 
that the origin of each convex be close to at least one interior 
sample . 
[ 0085 ] As another example , the loss function can also 
include a decomposition loss which penalizes sampled 
points which are covered by more than 2 convexes . 
[ 0086 ] As another example , the loss function can also 
include a guide loss that encourages solutions where each 
convex contains at least k number of points , where k is a 
hyperparameter . This loss can be computed akin to recon 
struction loss , but is defined for each convex and only the 
first sampled points are used . 
[ 0087 ] The system 120 can train these components on 
batches of training examples to minimize the loss described 
above using any appropriate machine learning training tech 
nique , e.g. , a gradient descent technique with any appropri 
ate optimizer , e.g. , stochastic gradient descent , Adam , 
rmsProp , or Adafactor . In some implementations , gradients 
are backpropagated through the neural network 120 and into 
the neural network 110 during the training of the neural 
networks on the loss function . 
[ 0088 ] FIG . 4 is a flow diagram of an example process 400 
for generating a region detection output . For convenience , 
the process 400 will be described as being performed by a 
system of one or more computers located in one or more 
locations . For example , a region detection system , e.g. , the 
region detection system 150 of FIG . 1A , appropriately 
programmed in accordance with this specification , can per 
form the process 400 . 
[ 0089 ] The system receives a representation of a scene in 
an environment ( step 402 ) . As described above , the repre 
sentation can be a top - down representation generated from 
laser sensor data . 
[ 0090 ] The system processes the representation using a 
center prediction neural network to generate : ( i ) features of 
the scene in the environment , and ( ii ) a respective center 
score corresponding to each of a plurality of locations in the 
environment ( step 408 ) . Each respective center score rep 
resents a predicted likelihood that a center of a region is 
located at the corresponding location in the environment . As 
described above , the features of the scene can be the outputs 
of one or more hidden layers of the center prediction neural 
network or can be respective per pixel scores for each pixel 
in the representation . 
[ 0091 ] The system selects , based on the respective center 
scores , one or more of the plurality of locations in the 
environment ( step 406 ) . 
[ 0092 ] For each selected location , the system processes an 
input that includes the features of the scene in the environ 
ment and data specifying the selected location using a 
geometry prediction neural network to generate a geometry 
prediction ( step 408 ) . The geometry prediction represents a 
geometry of the region that is centered at the selected 
location as a collection of one or more convexes by speci 
fying , for each of the one or more convexes , a respective 
plurality of hyperplanes that define the convex . 

[ 0093 ] Embodiments of the subject matter and the func 
tional operations described in this specification can be 
implemented in digital electronic circuitry , in tangibly 
embodied computer software or firmware , in computer hard 
ware , including the structures disclosed in this specification 
and their structural equivalents , or in combinations of one or 
more of them . Embodiments of the subject matter described 
in this specification can be implemented as one or more 
computer programs , i.e. , one or more modules of computer 
program instructions encoded on a tangible non - transitory 
storage medium for execution by , or to control the operation 
of , data processing apparatus . The computer storage medium 
can be a machine - readable storage device , a machine - read 
able storage substrate , a random or serial access memory 
device , or a combination of one or more of them . Alterna 
tively or in addition , the program instructions can be 
encoded on an artificially - generated propagated signal , e.g. , 
a machine - generated electrical , optical , or electromagnetic 
signal , that is generated to encode information for transmis 
sion to suitable receiver apparatus for execution by a data 
processing apparatus . 
[ 0094 ) The term " data processing apparatus ” refers to data ] 
processing hardware and encompasses all kinds of appara 
tus , devices , and machines for processing data , including by 
way of example a programmable processor , a computer , or 
multiple processors or computers . The apparatus can also be , 
or further include , off - the - shelf or custom - made parallel 
processing subsystems , e.g. , a GPU or another kind of 
special - purpose processing subsystem . The apparatus can 
also be , or further include , special purpose logic circuitry , 
e.g. , an FPGA ( field programmable gate array ) or an ASIC 
( application - specific integrated circuit ) . The apparatus can 
optionally include , in addition to hardware , code that creates 
an execution environment for computer programs , e.g. , code 
that constitutes processor firmware , a protocol stack , a 
database management system , an operating system , or a 
combination of one or more of them . 
[ 0095 ] A computer program which may also be referred to 
or described as a program , software , a software application , 
an app , a module , a software module , a script , or code ) can 
be written in any form of programming language , including 
compiled or interpreted languages , or declarative or proce 
dural languages , and it can be deployed in any form , 
including as a stand - alone program or as a module , compo 
nent , subroutine , or other unit suitable for use in a computing 
environment . A program may , but need not , correspond to a 
file in a file system . A program can be stored in a portion of 
a file that holds other programs or data , e.g. , one or more 
scripts stored in a markup language document , in a single 
file dedicated to the program in question , or in multiple 
coordinated files , e.g. , files that store one or more modules , 
sub - programs , or portions of code . A computer program can 
be deployed to be executed on one computer or on multiple 
computers that are located at one site or distributed across 
multiple sites and interconnected by a data communication 
network . 
[ 0096 ] For a system of one or more computers to be 
configured to perform particular operations or actions means 
that the system has installed on it software , firmware , 
hardware , or a combination of them that in operation cause 
the system to perform the operations or actions . For one or 
more computer programs to be configured to perform par 
ticular operations or actions means that the one or more 



US 2022/0292840 A1 Sep. 15 , 2022 
7 

a 

a 

programs include instructions that , when executed by data 
processing apparatus , cause the apparatus to perform the 
operations or actions . 
[ 0097 ] As used in this specification , an “ engine , ” or “ soft 
ware engine , ” refers to a software implemented input / output 
system that provides an output that is different from the 
input . An engine can be an encoded block of functionality , 
such as a library , a platform , a software development kit 
( " SDK " ) , or an object . Each engine can be implemented on 
any appropriate type of computing device , e.g. , servers , 
mobile phones , tablet computers , notebook computers , 
music players , e - book readers , laptop or desktop computers , 
PDAs , smart phones , or other stationary or portable devices , 
that includes one or more processors and computer readable 
media . Additionally , two or more of the engines may be 
implemented on the same computing device , or on different 
computing devices . 
[ 0098 ] The processes and logic flows described in this 
specification can be performed by one or more program 
mable computers executing one or more computer programs 
to perform functions by operating on input data and gener 
ating output . The processes and logic flows can also be 
performed by special purpose logic circuitry , e.g. , an FPGA 
or an ASIC , or by a combination of special purpose logic 
circuitry and one or more programmed computers . 
[ 0099 ] Computers suitable for the execution of a computer 
program can be based on general or special purpose micro 
processors or both , or any other kind of central processing 
unit . Generally , a central processing unit will receive 
instructions and data from a read - only memory or a random 
access memory or both . The essential elements of a com 
puter are a central processing unit for performing or execut 
ing instructions and one or more memory devices for storing 
instructions and data . The central processing unit and the 
memory can be supplemented by , or incorporated in , special 
purpose logic circuitry . Generally , a computer will also 
include , or be operatively coupled to receive data from or 
transfer data to , or both , one or more mass storage devices 
for storing data , e.g. , magnetic , magneto - optical disks , or 
optical disks . However , a computer need not have such 
devices . Moreover , a computer can be embedded in another 
device , e.g. , a mobile telephone , a personal digital assistant 
( PDA ) , a mobile audio or video player , a game console , a 
Global Positioning System ( GPS ) receiver , or a portable 
storage device , e.g. , a universal serial bus ( USB ) flash drive , 
to name just a few . 
[ 0100 ] Computer - readable media suitable for storing com 
puter program instructions and data include all forms of 
non - volatile memory , media and memory devices , including 
by way of example semiconductor memory devices , e.g. , 
EPROM , EEPROM , and flash memory devices ; magnetic 
disks , e.g. , internal hard disks or removable disks ; magneto 
optical disks ; and CD - ROM and DVD - ROM disks . 
[ 0101 ] To provide for interaction with a user , embodi 
ments of the subject matter described in this specification 
can be implemented on a computer having a display device , 
e.g. , a CRT ( cathode ray tube ) or LCD ( liquid crystal 
display ) monitor , for displaying information to the user and 
a keyboard and pointing device , e.g. , a mouse , trackball , or 
a presence sensitive display or other surface by which the 
user can provide input to the computer . Other kinds of 
devices can be used to provide for interaction with a user as 
well ; for example , feedback provided to the user can be any 
form of sensory feedback , e.g. , visual feedback , auditory 

feedback , or tactile feedback ; and input from the user can be 
received in any form , including acoustic , speech , or tactile 
input . In addition , a computer can interact with a user by 
sending documents to and receiving documents from a 
device that is used by the user ; for example , by sending web 
pages to a web browser on a user's device in response to 
requests received from the web browser . Also , a computer 
can interact with a user by sending text messages or other 
forms of message to a personal device , e.g. , a smartphone , 
running a messaging application , and receiving responsive 
messages from the user in return . 
[ 0102 ] Embodiments of the subject matter described in 
this specification can be implemented in a computing system 
that includes a back - end component , e.g. , as a data server , or 
that includes a middleware component , e.g. , an application 
server , or that includes a front - end component , e.g. , a client 
computer having a graphical user interface , a web browser , 
or an app through which a user can interact with an imple 
mentation of the subject matter described in this specifica 
tion , or any combination of one or more such back - end , 
middleware , or front - end components . The components of 
the system can be interconnected by any form or medium of 
digital data communication , e.g. , a communication network . 
Examples of communication networks include a local area 
network ( LAN ) and a wide area network ( WAN ) , e.g. , the 
Internet . 
[ 0103 ] The computing system can include clients and 
servers . A client and server are generally remote from each 
other and typically interact through a communication net 
work . The relationship of client and server arises by virtue 
of computer programs running on the respective computers 
and having a client - server relationship to each other . In some 
embodiments , a server transmits data , e.g. , an HTML page , 
to a user device , e.g. , for purposes of displaying data to and 
receiving user input from a user interacting with the device , 
which acts as a client . Data generated at the user device , e.g. , 
a result of the user interaction , can be received at the server 
from the device . 
[ 0104 ] While this specification contains many specific 
implementation details , these should not be construed as 
limitations on the scope of any invention or on the scope of 
what may be claimed , but rather as descriptions of features 
that may be specific to particular embodiments of particular 
inventions . Certain features that are described in this speci 
fication in the context of separate embodiments can also be 
implemented in combination in a single embodiment . Con 
versely , various features that are described in the context of 
a single embodiment can also be implemented in multiple 
embodiments separately or in any suitable subcombination . 
Moreover , although features may be described above as 
acting in certain combinations and even initially be claimed 
as such , one or more features from a claimed combination 
can in some cases be excised from the combination , and the 
claimed combination may be directed to a subcombination 
or variation of a sub combination . 
[ 0105 ] Similarly , while operations are depicted in the 
drawings in a particular order , this should not be understood 
as requiring that such operations be performed in the par 
ticular order shown or in sequential order , or that all illus 
trated operations be performed , to achieve desirable results . 
In certain circumstances , multitasking and parallel process 
ing may be advantageous . Moreover , the separation of 
various system modules and components in the embodi 
ments described above should not be understood as requir 
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ing such separation in all embodiments , and it should be 
understood that the described program components and 
systems can generally be integrated together in a single 
software product or packaged into multiple software prod 
ucts . 
[ 0106 ] Particular embodiments of the subject matter have 
been described . Other embodiments are within the scope of 
the following claims . For example , the actions recited in the 
claims can be performed in a different order and still achieve 
desirable results . As one example , the processes depicted in 
the accompanying figures do not necessarily require the 
particular order shown , or sequential order , to achieve 
desirable results . In certain some cases , multitasking and 
parallel processing may be advantageous . 
What is claimed is : 
1. A method performed by one or more computers , the 

method comprising : 
receiving a representation of a scene in an environment ; 
processing the representation using a center prediction 

neural network to generate : 
( i ) features of the scene in the environment , and 
( ii ) a respective center score corresponding to each of 

a plurality of locations in the environment , wherein 
each respective center score represents a predicted 
likelihood that a center of a region is located at the 
corresponding location in the environment ; 

selecting , based on the respective center scores , one or 
more of the plurality of locations in the environment ; 
and 

for each selected location : 
processing an input comprising the features of the 

scene in the environment and data specifying the 
selected location using a geometry prediction neural 
network to generate a geometry prediction that rep 
resents a geometry of the region that is centered at 
the selected location as a collection of one or more 
convexes by specifying , for each of the one or more 
convexes , a respective plurality of hyperplanes that 
define the convex . 

2. The method of claim 1 , further comprising : 
for each selected location , generating a polygonal repre 

sentation that represents the geometry of the region that 
is centered at the selected location from the respective 
plurality of hyperplanes for each of the one or more 

a 

representation that represents a likelihood that a region 
instance is depicted at the pixel . 

8. The method of claim 7 , wherein the features of the 
scene comprise the respective per pixel prediction scores for 
the plurality of pixels . 

9. The method of claim 1 , wherein the features of the 
scene comprise outputs of one or more hidden layers of the 
center prediction neural network . 

10. The method of claim 1 , wherein the data specifying 
the selected location is a feature map that has a same spatial 
dimensionality as the features and that identifies the selected 
location . 

11. The method of claim 1 , wherein the geometry predic 
tion generated by the geometry prediction neural network 
includes , for each hyperplane of each convex , parameters of 
a signed distance function that measures a signed distance of 
any given point in the environment from the hyperplane . 

12. The method of claim 11 , wherein the parameters of the 
signed distance function include a normal corresponding to 
the hyperplane . 

13. The method of claim 11 , wherein the parameters of the 
signed distance function include an offset of the hyperplane 
from the origin . 

14. The method of claim 1 , wherein the geometry pre 
diction neural network comprises an encoder neural network 
configured to process the input to generate a set of hyper 
plane parameters and a decoder neural network configured 
to process the set of hyperplane parameters to generate the 
geometry prediction . 

15. The method of claim 1 , wherein the center prediction 
neural network and the geometry prediction neural network 
have been trained jointly on a set of training data that 
includes a plurality of training representations and for each 
training representation a set of ground truth region geom 
etries . 

16. The method of claim 15 , wherein the center prediction 
neural network and the geometry prediction neural network 
have been trained jointly to minimize a loss function that 
includes a ( i ) a reconstruction loss that measures errors in 
geometry predictions relative to the ground truth region 
geometries and ( ii ) a center prediction loss that measures 
errors in center predictions generated by the center predic 
tion neural network relative to region centers specified by 
the ground truth region geometries . 

17. The method of claim 16 , wherein the center prediction 
neural network is configured to generate a respective pixel 
prediction score for each of a plurality of pixels in the 
representation that represents a likelihood that a region 
instance is depicted at the pixel , and wherein the loss 
function also includes ( iii ) a per pixel prediction loss that 
measures errors in the per pixel predictions relative to region 
locations specified by the ground truth region geometries . 

18. The method of claim 17 , wherein the loss function 
also includes ( iv ) a localization loss . 

19. The method of claim 16 , wherein during the joint 
training the geometry prediction neural network receives as 
input locations of region centers specified by the ground 
truth region geometries rather than locations selected based 
on center predictions generated by the center prediction 
neural network . 

convexes . 

3. The method of claim 1 , wherein the representation is a 
top - down representation of the scene in the environment . 

4. The method of claim 3 , wherein the representation is 
generated from raw laser data collected by one or more laser 
sensors of a vehicle navigating through the environment . 

5. The method of claim 3 , wherein each of the plurality of 
locations corresponds to a respective portion of the top 
down representation . 

6. The method of claim 5 , wherein each of the plurality of 
locations corresponds to a respective pixel in the top - down 
representation . 

7. The method of claim 1 , wherein the center prediction 
neural network is configured to generate a respective pixel 
prediction score for each of a plurality of pixels in the 
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20. A system comprising : 
one or more computers ; and 
one or more storage devices storing instructions that , 
when executed by the one or more computers , cause the 
one or more computers to perform operations compris 
ing : 

receiving a representation of a scene in an environment ; 
processing the representation using a center prediction 

neural network to generate : 
( i ) features of the scene in the environment , and 
( ii ) a respective center score corresponding to each of 

a plurality of locations in the environment , wherein 
each respective center score represents a predicted 
likelihood that a center of a region is located at the 
corresponding location in the environment ; 

selecting , based on the respective center scores , one or 
more of the plurality of locations in the environment ; 
and 

for each selected location : 
processing an input comprising the features of the 

scene in the environment and data specifying the 
selected location using a geometry prediction neural 
network to generate a geometry prediction that rep 
resents a geometry of the region that is centered at 
the selected location as a collection of one or more 
convexes by specifying , for each of the one or more 
convexes , a respective plurality of hyperplanes that 
define the convex . 

21. One or more non - transitory computer - readable stor 
age media storing instructions that when executed by one or 
more computers cause the one or more computers to perform 
operations comprising : 

receiving a representation of a scene in an environment ; 
processing the representation using a center prediction 

neural network to generate : 
( i ) features of the scene in the environment , and 
( ii ) a respective center score corresponding to each of 

a plurality of locations in the environment , wherein 
each respective center score represents a predicted 
likelihood that a center of a region is located at the 
corresponding location in the environment ; 

selecting , based on the respective center scores , one or 
more of the plurality of locations in the environment ; 
and 

for each selected location : 
processing an input comprising the features of the 

scene in the environment and data specifying the 
selected location using a eometry prediction neural 
network to generate a geometry prediction that rep 
resents a geometry of the region that is centered at 
the selected location as a collection of one or more 
convexes by specifying , for each of the one or more 
convexes , a respective plurality of hyperplanes that 
define the convex . 

* * 


